A ciencia atópase inmersa nunha “segunda revolución cuántica” que procura aproveitar o control sobre os fenómenos cuánticos logrado nas últimas décadas para crear tecnoloxías efectivas en diferentes campos, particularmente na xestión da información. Esta nova revolución xerará importantes oportunidades nos próximos anos, asociadas ás tecnoloxías de simulación, sensores, computación, comunicacións e criptografía. As aplicacións esperadas inclúen o manexo eficiente de conxuntos de datos moi grandes, a solución de problemas combinatorios exponenciais (con aplicacións á loxística), o deseño por computador de moléculas e fármacos, a implementación de comunicacións secretas e xeración de claves seguras, ou a capacidade de medir cantidades físicas con moita maior precisión (metroloxía cuántica).
Máster Universitario en Ciencia e Tecnoloxías de Información Cuántica
Duration:
1 academic year
RUCT code: 4318542
ECTS Number: 60
Seats number: 8
Dean or center director:
MARIA ELENA LOPEZ LAGO
elena.lopez.lago [at] usc.es
Title coordinator:
Javier Mas Sole
javier.mas [at] usc.es
Use languages:
Spanish, Galician
Coordinator university:
University of Santiago de Compostela
Partaker universities:
University of Santiago de Compostela
University of A Coruña
University of Vigo
Last accreditation date:
30/05/2023
Duration:
1 academic year
RUCT code: 4318542
ECTS Number: 60
Seats number: 8
Dean or center director:
MARIA ELENA LOPEZ LAGO
elena.lopez.lago [at] usc.es
Title coordinator:
Javier Mas Sole
javier.mas [at] usc.es
Use languages:
Spanish, Galician
Coordinator university:
University of Santiago de Compostela
Partaker universities:
University of Santiago de Compostela
University of A Coruña
University of Vigo
Last accreditation date:
30/05/2023
Completion conditions:
Compulsory: 15
Electives: 27
External internships OB 3
Master's final project: 15
Total: 60
The Master's syllabus does not include specialisations or mentions, but it does include voluntary itineraries that may be included in the SET.
-Quantum Computing
-Quantum Communications
-Quantum Information Physics
To obtain the master's degree for a pathway, students will have to take the 15 optional credits of the corresponding module.
Plan de estudos de 60 ECTS que se estrutura do seguinte modo:
- Obrigatorios 15
- Opativos 27
- Prácticas externas 3
- Traballo fin de máster 15
O plan de estudos do máster non contempla especialidades pero si itinerarios de carácter voluntario que poderán figurar no SET:
- Computación Cuántica
- Comunicacións Cuánticas
- Física da Información Cuántica
Para obter o máster por un itinerario o alumnado terá que cursar os 15 créditos optativos do módulo correspondente.
Quantum mechanics I
- P1261101
- Compulsory Credits
- First Semester
- 3 Credits
Quantum mechanics II
- P1261102
- Compulsory Credits
- First Semester
- 3 Credits
Fundamentals of quantum information
- P1261103
- Compulsory Credits
- First Semester
- 3 Credits
Introduction to quantum computing
- P1261104
- Compulsory Credits
- First Semester
- 3 Credits
Fundamentals of quantum communications
- P1261105
- Compulsory Credits
- First Semester
- 3 Credits
Quantum computing tools
- P1261201
- Elective Credits
- First Semester
- 3 Credits
Programming and implementation of quantum algorithms
- P1261202
- Elective Credits
- First Semester
- 3 Credits
Quantum computing and machine learning
- P1261203
- Elective Credits
- First Semester
- 3 Credits
Quantum and High Performance Computing
- P1261204
- Elective Credits
- Second Semester
- 3 Credits
Practical applications of quantum computing
- P1261205
- Elective Credits
- Second Semester
- 3 Credits
Advanced quantum information theory
- P1261206
- Elective Credits
- First Semester
- 3 Credits
Photonic technologies for quantum communication
- P1261207
- Elective Credits
- First Semester
- 3 Credits
Advanced quantum communications
- P1261208
- Elective Credits
- First Semester
- 3 Credits
Error correction codes
- P1261209
- Elective Credits
- Second Semester
- 3 Credits
Redes de comunicaciones cuánticas
- P1261210
- Elective Credits
- Second Semester
- 3 Credits
Quantum optics
- P1261211
- Elective Credits
- First Semester
- 3 Credits
Physical systems for quantum information
- P1261212
- Elective Credits
- First Semester
- 3 Credits
Quantum materials
- P1261213
- Elective Credits
- Second Semester
- 3 Credits
Open systems and quantum thermodynamics
- P1261214
- Elective Credits
- Second Semester
- 3 Credits
Metrology and quantum sensors
- P1261215
- Elective Credits
- Second Semester
- 3 Credits
Quantum computing architectures
- P1261216
- Elective Credits
- First Semester
- 3 Credits
Superconductivity science and technology
- P1261217
- Elective Credits
- Second Semester
- 3 Credits
Quantum satellite communications
- P1261218
- Elective Credits
- Second Semester
- 3 Credits
Semiconductor photonics
- P1261219
- Elective Credits
- Second Semester
- 3 Credits
Introduction to quantum simulation
- P1261220
- Elective Credits
- Second Semester
- 3 Credits
Quantum communications laboratory
- P1261221
- Elective Credits
- Second Semester
- 3 Credits
Advanced quantum mechanics
- P1261222
- Elective Credits
- First Semester
- 3 Credits
Numerical methods in quantum computing
- P1261223
- Elective Credits
- Second Semester
- 3 Credits
External Internship II
- P1261225
- Elective Credits
- Work Placements in Companies for Degrees and Master's Degrees
- 3 Credits
Rule-based quantum systems
- P1261226
- Elective Credits
- Second Semester
- 3 Credits
Experimental techniques for quantum information
- P1261227
- Elective Credits
- First Semester
- 3 Credits
Final master´s project
- P1261106
- Compulsory Credits
- End of Degree Projects and End of Master's Degree Projects
- 15 Credits
External Internship I
- P1261224
- Compulsory Credits
- Work Placements in Companies for Degrees and Master's Degrees
- 3 Credits
The recommended entry profile is that of university graduates in the field of science (mainly Physics, but also Chemistry, Mathematics, Nanoscience and Nanotechnology and other related degrees) and en
Completion conditions:
Compulsory: 15
Electives: 27
External internships OB 3
Master's final project: 15
Total: 60
La USC, a través del ORE mantiene un sistema de información permanente a través de la web, que se complementa con campañas y acciones informativas específicas de promoción de las convocatorias. Además, cuenta con recursos de apoyo para el estudiantado de acogida, tales como la reserva de plazas en las Residencias Universitarias, o el Programa de Atención a Estudiantes Extracomunitarios (PATEX) del Vicerrectorado con competencias en movilidad, a través del cual voluntarios/as de la USC realizan tareas de acompañamiento dirigidas a la integración en la ciudad y en la Universidad del alumnado de acogida.
En cuanto a estudiantes de acogida, se organiza una sesión de recepción, al inicio de cada cuatrimestre, en la que se les informa y orienta sobre el centro y los estudios, al tiempo que se les pone en contacto con los coordinadores académicos, que actuarán como tutores, y el personal del Centro implicado en su atención.
La Facultad de Físicas de la USC, además de los responsables citados anteriormente, cuenta con la colaboración de varios docentes que actúan como coordinadores académicos, y cuya función es tutelar y asistir en sus decisiones académicas al alumnado propio y de acogida, así como firmar los acuerdos académicos de movilidad que aseguren que la acción se encuadre en los objetivos y competencias del título.
El centro, con el Responsable Académico de Movilidad y de la Comisión de Título, promueve la incorporación de nuevos acuerdos académicos basándose en recomendaciones del personal docente, y vela porque esas acciones sean un complemento a la formación del alumnado del Centro, evaluando anualmente la renovación de cada acuerdo.
La selección de candidatos se lleva a cabo, para cada convocatoria o programa, por una Comisión de Selección, compuesta por las coordinadoras Erasmus y Sicue-Séneca del Centro, la persona responsable de movilidad y la gestora, acorde con los criterios de baremación, previamente definidos.
Access
Poderán acceder ás ensinanzas oficiais de máster:
1. As persoas que estean en posesión dun título universitario oficial español.
2. Aquelas que teñan un título expedido por unha institucion de educación superior do EEES que faculta no país expedidor do título para o acceso a ensinanzas de máster.
3. Os titulados conforme a sistemas educativos alleos ao EEES sen necesidade de homologación dos seus títulos, previa comprobación pola Universidade de que os ditos títulos acreditan un nivel de formación equivalente aos correspondentes títulos universitarios españois e que facultan no país expedidor do título para o acceso a ensinanzas de posgrao.
Admission
Modality: Specific criteria
Access qualifications
- Degree in Physics, Telecommunications Engineering or Computer Science or equivalent (6 points).
- Other Bachelor's Degrees in Engineering or equivalent (up to 4 points).
- Other Bachelor's Degrees in Science and Technology: Chemistry, Mathematics, Nanotechnology, and equivalents... (up to 4 points)
Selection criteria:
-Access qualification: up to 6 points.
-Academic record: up to 2 points
-Other master's degrees in related subjects: up to 1 point.
-Professional or research experience: up to 1 point.
Information updated at each call for enrolment
Modality: Specific criteria
Access qualifications
- Degree in Physics, Telecommunications Engineering or Computer Science or equivalent (6 points).
- Other Bachelor's Degrees in Engineering or equivalent (up to 4 points).
- Other Bachelor's Degrees in Science and Technology: Chemistry, Mathematics, Nanotechnology, and equivalents... (up to 4 points)
Selection criteria:
-Access qualification: up to 6 points.
-Academic record: up to 2 points
-Other master's degrees in related subjects: up to 1 point.
-Professional or research experience: up to 1 point.
Information updated at each call for enrolment
- Possess and understand knowledge that provides a basis or opportunity for originality in the development and/or application of ideas, often in a research context.
- Students are able to apply their acquired knowledge and problem-solving skills in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their field of study.
- Students are able to integrate knowledge and deal with the complexity of making judgements based on incomplete or limited information, including reflections on the social and ethical responsibilities associated with the application of their knowledge and judgements.
- Students are able to communicate their conclusions and the knowledge and rationale underpinning them to specialist and non-specialist audiences in a clear and unambiguous way.
- students possess the learning skills to enable them to continue studying in a largely self-directed or autonomous way.
- Maintain and extend well-founded theoretical approaches to enable the introduction and exploitation of advanced concepts and developments in the various fields of quantum technologies.
- Be able to handle with ease and rigour the theoretical foundations and techniques of quantum systems: quantum communication, quantum information and quantum computation.
- Search for and select useful information necessary to solve complex problems in the field of quantum technologies, handling bibliographic sources in the field.
- Prepare adequately and with originality written compositions or motivated arguments, write plans, work projects, scientific articles and formulate reasonable working hypotheses.
- Understand the domain, concepts, methods and basic techniques of quantum mechanics: mathematical formalism, postulates, operators, matrices, Bloch sphere, photonic states.
- Knowledge and competence in experimental techniques for the processing of quantum information: interactions, measurements, oscillations, interferences, communication systems, etc.
- Understanding and knowledge of the fundamentals of Quantum Information Theory, as well as the basic aspects of the four types of quantum technologies: computation, communications, metrology, simulation.
- Know and know how to apply the physical theories inherent to the understanding of quantum information processing systems, including quantum thermodynamics as well as advanced aspects of magnetism and quantum mechanics.
- Know and understand the nature of the physical platforms for quantum information processing in solid state systems: superconducting systems, cryoscience and quantum materials, including the study of topological states.
- Know and understand the nature of the physical platforms for processing quantum information in photonic systems: quantum optics, integrated optical systems, opto-atomic systems, detection and measurement systems, semiconductor photonics.
- Acquiring and knowing how to apply the basic principles of quantum computing: analysing, understanding and implementing quantum algorithms, mastering the appropriate computer languages and understanding the quantum circuit paradigm.
- Know the algorithms and strategies of classical computing inspired by quantum computing: tensor networks, matrix product states, etc.
- Know and know how to apply advanced aspects of quantum computing: quantum learning, efficient quantum architecture, mode of operation of quantum accelerators, high-performance computing, rule-based quantum systems and applications to numerical computation.- Know practical application scenarios of quantum computing in problems of scientific, technological and financial interest. Identify domains that exhibit quantum advantage. Know the institutions and companies that are actors in quantum computing, acquiring a prespective of the agenda that is reasonable to expect in the coming years.
- Acquire a solid foundation in quantum information theory as it applies to quantum communications, as well as in the technology of photonic devices used in quantum communications, both terrestrial, aerial and satellite.
- Acquire skills for the design and estimation of resources that enable the development of quantum communication channels and networks and distributed computing. Know the current state of development and implementation of quantum networks, and the plans for their expansion.
- Knowing the strategies of quantum cryptography and their viability and solvency in the context of the quantum internet, quantum blockchain, and secret communications, acquiring a panoramic vision of the actors that will be essential in their deployment.
- Express themselves correctly, both orally and in writing, in the official languages of the Autonomous Community.
- Master the oral and written expression and comprehension of a foreign language.
- Use the basic tools of information and communication technologies (ICT) necessary for the exercise of their profession and for lifelong learning.
- Develop for the exercise of a citizenship that respects democratic culture, human rights and the gender perspective.
- To understand the importance of entrepreneurial culture and to know the means available to entrepreneurs.
- Acquire life skills and healthy habits, routines and lifestyles.
- Develop the ability to work in interdisciplinary or transdisciplinary teams to offer proposals that contribute to sustainable environmental, economic, political and social development.
- Value the importance of research, innovation and technological development in the socio-economic and cultural progress of society.
- Have the ability to manage time and resources: develop plans, prioritise activities, identify critical ones, establish deadlines and meet them.
- Be able to apply knowledge, skills and attitudes to business and professional reality, planning, managing and evaluating projects in the field of quantum technologies.
- Be able to pose, model and solve problems that require the application of artificial intelligence methods, techniques and technologies.
Mobility
La movilidad de los/as estudiantes está regulada a través del “Reglamento de intercambios interuniversitarios”. A través de la Oficina de Relaciones Exteriores se gestionan programas de intercambio tanto nacionales (SICUE), como europeos (ERASMUS) y extracomunitarios (intercambios con países de América Latina o países de habla inglesa):
Internships
Las prácticas externas obligatorias constituyen una materia de tres créditos ECTS que deberá cursar el alumno/a. El objetivo de esta materia es que el estudiante conozca la realidad laboral de una empresa o institución, adquiriendo experiencia y habilidades profesionales y aplicando en un entorno real los conocimientos adquiridos.
Las prácticas externas obligatorias podrán complementarse cursando la materia optativa “Prácticas externas II” en colaboración con organizaciones empresariales o académicas. Esta materia tiene una extensión de tres créditos ECTS.
La titulación contempla un trabajo fin de máster de 15 créditos. El alumno/a desarrollará un trabajo en el ámbito de las materias que está cursando cuyo alcance esté de acuerdo con el número de créditos de la materia.
Completion conditions:
Compulsory: 15
Electives: 27
External internships OB 3
Master's final project: 15
Total: 60
The Master's syllabus does not include specialisations or mentions, but it does include voluntary itineraries that may be included in the SET.
-Quantum Computing
-Quantum Communications
-Quantum Information Physics
To obtain the master's degree for a pathway, students will have to take the 15 optional credits of the corresponding module.
Plan de estudos de 60 ECTS que se estrutura do seguinte modo:
- Obrigatorios 15
- Opativos 27
- Prácticas externas 3
- Traballo fin de máster 15
O plan de estudos do máster non contempla especialidades pero si itinerarios de carácter voluntario que poderán figurar no SET:
- Computación Cuántica
- Comunicacións Cuánticas
- Física da Información Cuántica
Para obter o máster por un itinerario o alumnado terá que cursar os 15 créditos optativos do módulo correspondente.
Quantum mechanics I
- P1261101
- Compulsory Credits
- First Semester
- 3 Credits
Quantum mechanics II
- P1261102
- Compulsory Credits
- First Semester
- 3 Credits
Fundamentals of quantum information
- P1261103
- Compulsory Credits
- First Semester
- 3 Credits
Introduction to quantum computing
- P1261104
- Compulsory Credits
- First Semester
- 3 Credits
Fundamentals of quantum communications
- P1261105
- Compulsory Credits
- First Semester
- 3 Credits
Quantum computing tools
- P1261201
- Elective Credits
- First Semester
- 3 Credits
Programming and implementation of quantum algorithms
- P1261202
- Elective Credits
- First Semester
- 3 Credits
Quantum computing and machine learning
- P1261203
- Elective Credits
- First Semester
- 3 Credits
Quantum and High Performance Computing
- P1261204
- Elective Credits
- Second Semester
- 3 Credits
Practical applications of quantum computing
- P1261205
- Elective Credits
- Second Semester
- 3 Credits
Advanced quantum information theory
- P1261206
- Elective Credits
- First Semester
- 3 Credits
Photonic technologies for quantum communication
- P1261207
- Elective Credits
- First Semester
- 3 Credits
Advanced quantum communications
- P1261208
- Elective Credits
- First Semester
- 3 Credits
Error correction codes
- P1261209
- Elective Credits
- Second Semester
- 3 Credits
Redes de comunicaciones cuánticas
- P1261210
- Elective Credits
- Second Semester
- 3 Credits
Quantum optics
- P1261211
- Elective Credits
- First Semester
- 3 Credits
Physical systems for quantum information
- P1261212
- Elective Credits
- First Semester
- 3 Credits
Quantum materials
- P1261213
- Elective Credits
- Second Semester
- 3 Credits
Open systems and quantum thermodynamics
- P1261214
- Elective Credits
- Second Semester
- 3 Credits
Metrology and quantum sensors
- P1261215
- Elective Credits
- Second Semester
- 3 Credits
Quantum computing architectures
- P1261216
- Elective Credits
- First Semester
- 3 Credits
Superconductivity science and technology
- P1261217
- Elective Credits
- Second Semester
- 3 Credits
Quantum satellite communications
- P1261218
- Elective Credits
- Second Semester
- 3 Credits
Semiconductor photonics
- P1261219
- Elective Credits
- Second Semester
- 3 Credits
Introduction to quantum simulation
- P1261220
- Elective Credits
- Second Semester
- 3 Credits
Quantum communications laboratory
- P1261221
- Elective Credits
- Second Semester
- 3 Credits
Advanced quantum mechanics
- P1261222
- Elective Credits
- First Semester
- 3 Credits
Numerical methods in quantum computing
- P1261223
- Elective Credits
- Second Semester
- 3 Credits
External Internship II
- P1261225
- Elective Credits
- Work Placements in Companies for Degrees and Master's Degrees
- 3 Credits
Rule-based quantum systems
- P1261226
- Elective Credits
- Second Semester
- 3 Credits
Experimental techniques for quantum information
- P1261227
- Elective Credits
- First Semester
- 3 Credits
Final master´s project
- P1261106
- Compulsory Credits
- End of Degree Projects and End of Master's Degree Projects
- 15 Credits
External Internship I
- P1261224
- Compulsory Credits
- Work Placements in Companies for Degrees and Master's Degrees
- 3 Credits
The recommended entry profile is that of university graduates in the field of science (mainly Physics, but also Chemistry, Mathematics, Nanoscience and Nanotechnology and other related degrees) and en
Completion conditions:
Compulsory: 15
Electives: 27
External internships OB 3
Master's final project: 15
Total: 60
La USC, a través del ORE mantiene un sistema de información permanente a través de la web, que se complementa con campañas y acciones informativas específicas de promoción de las convocatorias. Además, cuenta con recursos de apoyo para el estudiantado de acogida, tales como la reserva de plazas en las Residencias Universitarias, o el Programa de Atención a Estudiantes Extracomunitarios (PATEX) del Vicerrectorado con competencias en movilidad, a través del cual voluntarios/as de la USC realizan tareas de acompañamiento dirigidas a la integración en la ciudad y en la Universidad del alumnado de acogida.
En cuanto a estudiantes de acogida, se organiza una sesión de recepción, al inicio de cada cuatrimestre, en la que se les informa y orienta sobre el centro y los estudios, al tiempo que se les pone en contacto con los coordinadores académicos, que actuarán como tutores, y el personal del Centro implicado en su atención.
La Facultad de Físicas de la USC, además de los responsables citados anteriormente, cuenta con la colaboración de varios docentes que actúan como coordinadores académicos, y cuya función es tutelar y asistir en sus decisiones académicas al alumnado propio y de acogida, así como firmar los acuerdos académicos de movilidad que aseguren que la acción se encuadre en los objetivos y competencias del título.
El centro, con el Responsable Académico de Movilidad y de la Comisión de Título, promueve la incorporación de nuevos acuerdos académicos basándose en recomendaciones del personal docente, y vela porque esas acciones sean un complemento a la formación del alumnado del Centro, evaluando anualmente la renovación de cada acuerdo.
La selección de candidatos se lleva a cabo, para cada convocatoria o programa, por una Comisión de Selección, compuesta por las coordinadoras Erasmus y Sicue-Séneca del Centro, la persona responsable de movilidad y la gestora, acorde con los criterios de baremación, previamente definidos.
Access
Poderán acceder ás ensinanzas oficiais de máster:
1. As persoas que estean en posesión dun título universitario oficial español.
2. Aquelas que teñan un título expedido por unha institucion de educación superior do EEES que faculta no país expedidor do título para o acceso a ensinanzas de máster.
3. Os titulados conforme a sistemas educativos alleos ao EEES sen necesidade de homologación dos seus títulos, previa comprobación pola Universidade de que os ditos títulos acreditan un nivel de formación equivalente aos correspondentes títulos universitarios españois e que facultan no país expedidor do título para o acceso a ensinanzas de posgrao.
Admission
Modality: Specific criteria
Access qualifications
- Degree in Physics, Telecommunications Engineering or Computer Science or equivalent (6 points).
- Other Bachelor's Degrees in Engineering or equivalent (up to 4 points).
- Other Bachelor's Degrees in Science and Technology: Chemistry, Mathematics, Nanotechnology, and equivalents... (up to 4 points)
Selection criteria:
-Access qualification: up to 6 points.
-Academic record: up to 2 points
-Other master's degrees in related subjects: up to 1 point.
-Professional or research experience: up to 1 point.
Information updated at each call for enrolment
Modality: Specific criteria
Access qualifications
- Degree in Physics, Telecommunications Engineering or Computer Science or equivalent (6 points).
- Other Bachelor's Degrees in Engineering or equivalent (up to 4 points).
- Other Bachelor's Degrees in Science and Technology: Chemistry, Mathematics, Nanotechnology, and equivalents... (up to 4 points)
Selection criteria:
-Access qualification: up to 6 points.
-Academic record: up to 2 points
-Other master's degrees in related subjects: up to 1 point.
-Professional or research experience: up to 1 point.
Information updated at each call for enrolment
- Possess and understand knowledge that provides a basis or opportunity for originality in the development and/or application of ideas, often in a research context.
- Students are able to apply their acquired knowledge and problem-solving skills in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their field of study.
- Students are able to integrate knowledge and deal with the complexity of making judgements based on incomplete or limited information, including reflections on the social and ethical responsibilities associated with the application of their knowledge and judgements.
- Students are able to communicate their conclusions and the knowledge and rationale underpinning them to specialist and non-specialist audiences in a clear and unambiguous way.
- students possess the learning skills to enable them to continue studying in a largely self-directed or autonomous way.
- Maintain and extend well-founded theoretical approaches to enable the introduction and exploitation of advanced concepts and developments in the various fields of quantum technologies.
- Be able to handle with ease and rigour the theoretical foundations and techniques of quantum systems: quantum communication, quantum information and quantum computation.
- Search for and select useful information necessary to solve complex problems in the field of quantum technologies, handling bibliographic sources in the field.
- Prepare adequately and with originality written compositions or motivated arguments, write plans, work projects, scientific articles and formulate reasonable working hypotheses.
- Understand the domain, concepts, methods and basic techniques of quantum mechanics: mathematical formalism, postulates, operators, matrices, Bloch sphere, photonic states.
- Knowledge and competence in experimental techniques for the processing of quantum information: interactions, measurements, oscillations, interferences, communication systems, etc.
- Understanding and knowledge of the fundamentals of Quantum Information Theory, as well as the basic aspects of the four types of quantum technologies: computation, communications, metrology, simulation.
- Know and know how to apply the physical theories inherent to the understanding of quantum information processing systems, including quantum thermodynamics as well as advanced aspects of magnetism and quantum mechanics.
- Know and understand the nature of the physical platforms for quantum information processing in solid state systems: superconducting systems, cryoscience and quantum materials, including the study of topological states.
- Know and understand the nature of the physical platforms for processing quantum information in photonic systems: quantum optics, integrated optical systems, opto-atomic systems, detection and measurement systems, semiconductor photonics.
- Acquiring and knowing how to apply the basic principles of quantum computing: analysing, understanding and implementing quantum algorithms, mastering the appropriate computer languages and understanding the quantum circuit paradigm.
- Know the algorithms and strategies of classical computing inspired by quantum computing: tensor networks, matrix product states, etc.
- Know and know how to apply advanced aspects of quantum computing: quantum learning, efficient quantum architecture, mode of operation of quantum accelerators, high-performance computing, rule-based quantum systems and applications to numerical computation.- Know practical application scenarios of quantum computing in problems of scientific, technological and financial interest. Identify domains that exhibit quantum advantage. Know the institutions and companies that are actors in quantum computing, acquiring a prespective of the agenda that is reasonable to expect in the coming years.
- Acquire a solid foundation in quantum information theory as it applies to quantum communications, as well as in the technology of photonic devices used in quantum communications, both terrestrial, aerial and satellite.
- Acquire skills for the design and estimation of resources that enable the development of quantum communication channels and networks and distributed computing. Know the current state of development and implementation of quantum networks, and the plans for their expansion.
- Knowing the strategies of quantum cryptography and their viability and solvency in the context of the quantum internet, quantum blockchain, and secret communications, acquiring a panoramic vision of the actors that will be essential in their deployment.
- Express themselves correctly, both orally and in writing, in the official languages of the Autonomous Community.
- Master the oral and written expression and comprehension of a foreign language.
- Use the basic tools of information and communication technologies (ICT) necessary for the exercise of their profession and for lifelong learning.
- Develop for the exercise of a citizenship that respects democratic culture, human rights and the gender perspective.
- To understand the importance of entrepreneurial culture and to know the means available to entrepreneurs.
- Acquire life skills and healthy habits, routines and lifestyles.
- Develop the ability to work in interdisciplinary or transdisciplinary teams to offer proposals that contribute to sustainable environmental, economic, political and social development.
- Value the importance of research, innovation and technological development in the socio-economic and cultural progress of society.
- Have the ability to manage time and resources: develop plans, prioritise activities, identify critical ones, establish deadlines and meet them.
- Be able to apply knowledge, skills and attitudes to business and professional reality, planning, managing and evaluating projects in the field of quantum technologies.
- Be able to pose, model and solve problems that require the application of artificial intelligence methods, techniques and technologies.
Mobility
La movilidad de los/as estudiantes está regulada a través del “Reglamento de intercambios interuniversitarios”. A través de la Oficina de Relaciones Exteriores se gestionan programas de intercambio tanto nacionales (SICUE), como europeos (ERASMUS) y extracomunitarios (intercambios con países de América Latina o países de habla inglesa):
Internships
Las prácticas externas obligatorias constituyen una materia de tres créditos ECTS que deberá cursar el alumno/a. El objetivo de esta materia es que el estudiante conozca la realidad laboral de una empresa o institución, adquiriendo experiencia y habilidades profesionales y aplicando en un entorno real los conocimientos adquiridos.
Las prácticas externas obligatorias podrán complementarse cursando la materia optativa “Prácticas externas II” en colaboración con organizaciones empresariales o académicas. Esta materia tiene una extensión de tres créditos ECTS.
La titulación contempla un trabajo fin de máster de 15 créditos. El alumno/a desarrollará un trabajo en el ámbito de las materias que está cursando cuyo alcance esté de acuerdo con el número de créditos de la materia.