-
Créditos ECTS
Créditos ECTS: 4.5Horas ECTS Criterios/Memorias
Traballo do Alumno/a ECTS: 71.5
Horas de Titorías: 1
Clase Expositiva: 10
Clase Interactiva: 30
Total: 112.5Linguas de uso
Castelán, GalegoTipo:
Materia Ordinaria Grao RD 1393/2007 - 822/2021Departamentos:
Electrónica e ComputaciónÁreas:
Ciencia da Computación e Intelixencia ArtificialCentro
Escola Técnica Superior de EnxeñaríaConvocatoria:
Primeiro semestreDocencia:
Con docenciaMatrícula:
Matriculable -
Os axentes que aplican métodos de resolución de problemas usan representacións de estado e solución para obter unha solución a un problema que non sempre é óptima, pero que é de calidade suficiente para os recursos computacionais e de tempo dispoñibles. Os estudantes saberán e saberán aplicar os algoritmos e heurísticas de uso xeral máis comúns para resolver problemas con representacións de estado, buscar con adversario e satisfacción de restricións.
1. Introdución aos axentes intelixentes
2. Estratexias de busca
- Optimización e busca
- Busca local e busca heurística
- Busca con restricións
3. Metaheurísticas baseadas en traxectorias
- Introdución
- Arrefriamento simulado
4. Metaheurísticas de busca baseadas en poboacións
- Computación bioinspirada
- Algoritmos xenéticos
- Algoritmos de colonias de formigas
- Algoritmos de enxames de partículas
- Programación xenética
5. Introducción á optimización multiobxectivo
6. Busca entre adversarios
- Xogos de dous agentes
- Algoritmos Minimax e Alfa-Beta
- Funcións de avaliación
- Xogos estocásticosBibliografía Básica
- Russell, S., Norvig, P. Artificial Intelligence (A Modern Approach), (4th Edition Global Edition, 2022). ISBN: 9781292401133.
- R. Marín, J.T. Palma, Inteligencia Artificial. Técnicas, métodos y aplicaciones. McGraw-Hill, 2008. ISBN 978-84-481-5618-3.
- J. Kacprzyk, W. Pedrycz, Handbook of Computational Intelligence. Springer-Verlag, 2015. ISBN 978-3-662-43505-2.
Bibliografía Complementaria
- Nilsson, N.J. Inteligencia artificial (Una nueva síntesis). McGraw-Hill. (2001). ISBN: 9788448128241
- Virginie Mathivet. Inteligencia artificial para desarrolladores. ENI Ediciones, 2015.
- Fernando Sancho Caparrini. Curso de Inteligencia Artificial. http://www.cs.us.es/~fsanchoA materia contribúe ao desenvolvemento das competencias xerais e específicas incluídas na memoria do Grao en Enxeñaría en Informática da USC:
BÁSICAS E XERAIS
CG8 - Coñecemento de temas e tecnoloxías básicas que lles permitan aprender e desenvolver novos métodos e tecnoloxías, así como aqueles que lles confiren unha gran versatilidade para adaptarse a novas situacións.
CG9 - Capacidade para resolver problemas con iniciativa, toma de decisións, autonomía e creatividade. Capacidade para saber comunicar e transmitir os coñecementos, habilidades e destrezas da profesión de Enxeñeiro Técnico en Informática.
TRANSVERSAIS
TR1 - Instrumentais: capacidade de análise e síntese. Habilidades organizativas e de planificación. Comunicación oral e escrita en galego, castelán e inglés. Capacidade de xestión de información. Resolución de problemas. Toma de decisións.
TR2 - Persoal: traballo en equipo. Traballo nun equipo multidisciplinar e multilingüe. Habilidades nas relacións interpersoais. Pensamento crítico. Compromiso ético.
TR3 - Sistemática: aprendizaxe autónoma. Adaptación a novas situacións. Creatividade. Iniciativa e espírito emprendedor. Motivación pola calidade. Sensibilidade cara a cuestións ambientais.
ESPECÍFICAS
RI15 - Coñecemento e aplicación dos principios fundamentais e técnicas básicas dos sistemas intelixentes e da súa aplicación práctica
Os principais resultados de aprendizaxe esperados son:
- Coñecer a formulación de determinados conxuntos de problemas para os que se representa unha solución como unha secuencia de accións que permita acadar un determinado obxectivo.
- Aprende a deseñar unha representación computable para problemas baseados en obxectivos, a partir dun conxunto de estados (espazo inicial, obxectivo e de busca).
- Coñecer e aprender a aplicar as técnicas máis representativas de busca non reportada nun espazo estatal (en profundidade, ancho e as súas variantes), e saber analizar a súa eficiencia no tempo e no espazo de cómputo.
- Coñecer e aprender a aplicar as técnicas máis representativas de busca informada nun espazo estatal (A * e busca local), especialmente en problemas de optimización.
- Comprender a noción de heurística e analizar as implicacións da eficiencia do tempo e do espazo dos algoritmos de busca.
- Coñecer e aprender a aplicar técnicas básicas de busca cun rival (minimax, poda alfa-beta) e a súa relación cos xogos.
- Recoñecer a posibilidade de representar a estrutura interna dos estados a partir dunha formulación baseada nun conxunto de variables que se deben asignar para atopar unha solución que satisfaga un conxunto de restricións.
- Analizar as características dun determinado problema e determinar se se pode abordar mediante técnicas de busca. Selecciona a técnica máis axeitada para resolvela e aplicala
- Programar algunha destas técnicas nunha linguaxe de programación de propósito xeral.A metodoloxía de ensino basearase esencialmente no traballo individual, aínda que ás veces desenvolverase en grupo, principalmente en discusión cos profesores en clases expositivas e interactivas.
Para cada tema ou bloque temático das clases, os profesores prepararán os contidos, explicarán os obxectivos do tema aos estudantes na clase, suxerirán recursos bibliográficos e proporcionarán material de traballo adicional, principalmente exercicios relacionados con conceptos teóricos. Nas clases expositivas traballaranse as competencias CG8, CG9, TR1, TR3, RI15. Ademais, o profesorado proporá aos estudantes un conxunto de actividades a realizar, individualmente ou en grupo (casos, exercicios) que os alumnos deben presentar para a súa avaliación, de acordo cos prazos previstos. Estas actividades permitirán desenvolver as competencias CG8, CG9, TR1-3, RI15.
As prácticas e parte das sesións interactivas terán lugar na Aula de informática da escola, empregando diversas ferramentas de software e desenvolvendo aplicacións para cada un dos bloques temáticos. A realización das prácticas permitirá desenvolver as competencias CG8, CG9, TR1-3, RI15.
Os alumnos traballarán individualmente ou en pequenos grupos, cun seguimento e titoría constantes por parte dos profesores. Os guións de prácticas proporcionaranse as tarefas a realizar individualmente ou en pequenos grupos.
A docencia estará apoiada pola plataforma virtual da USC do seguinte xeito: repositorio da documentación relacionada coa materia (textos, presentacións, exercicios, guións de prácticas, ...) e titoría virtual dos estudantes (correo electrónico, foros) .A avaliación da aprendizaxe ten en conta tanto a parte teórica (40%) como a parte práctica (60%). Para superar a materia deberá obter unha nota global igual ou superior a 5, cunha puntuación máxima de 10 puntos, segundo os seguintes criterios:
- Parte teórica: avaliarase nun único exame, que se realizará na data oficial, e mediante a realización de exercicios. A nota de ambas as partes debe ser igual ou superior a 4 sobre unha puntuación máxima de 10 puntos, para que se poida aprobar a totalidade da materia. Se non, debe repetirse na oportunidade extraordinaria. A nota desta parte obterase como a media dos dous elementos de avaliación (exame 60% e exercicios 40%).
- Parte práctica (60%): avaliación de todas as actividades interactivas de entrega obrigatoria propostas, previstas ao remate das sesións 2, 4, 7, 9 e 12.
A cualificación final da materia será a media aritmética ponderada polas porcentaxes indicadas anteriormente das partes teóricas e prácticas. En caso de incorrer nalgunha das situacións indicadas anteriormente por non acadar nunha ou varias partes a nota mínima necesaria para aprobar globalmente a materia, a nota final da oportunidade será a mínima das cualificacións obtidas nas devanditas partes. As partes que non acaden o mínimo deben repetirse na segunda oportunidade.
A avaliación das prácticas interactivas non acaba coa entrega da mesma, senón que pode incluír a realización dun cuestionario de autoavaliación e/ou unha sesión de presentación e discusión presencial do mesmo.
Estas actividades de avaliación serán obrigatorias e poderán realizarse en clase interactiva, polo que, para efectos do establecido no Art.1 do Regulamento de asistencia a clase nas ensinanzas oficiais de grao e máster da Universidade de Santiago de Compostela (25/11/2024) ”, a asistencia ás sesións onde se programen estas actividades será obrigatoria, sendo un requisito a realización das mesmas que, de non cumprirse, suporá a cualificación de 0,0 no entregable correspondente.
Agás a indicada neste apartado, a asistencia a clase non terá outra valoración no sistema de avaliación, aínda que a asistencia ás diferentes actividades docentes axuda a mellorar a comprensión da materia e á adquisición das competencias.
Todas as entregas terán o mesmo peso na cualificación de prácticas. A cualificación desta parte ha de ser igual ou superior a 4 sobre unha puntuación máxima de 10 puntos, para que poida aprobarse o conxunto da materia.
Aquelas prácticas cunha cualificación inferior a 3 puntos deberán avaliarse na segunda oportunidade.
A cualificación final da materia será a media aritmética ponderada polas porcentaxes antes indicadas das partes teórica, práctica e actividades complementarias, salvo que nalgún ítem de avaliación non se alcancen os limiares mínimos establecidos.
En caso de non alcanzarse nunha ou máis partes a nota mínima necesaria para superar globalmente a materia, a cualificación final da oportunidade será o mínimo das cualificacións obtidas nas devanditas partes.
O alumnado que non teñan feito o exame ou se sometera á avaliación dalgunha outra actividade obrigatoria obterán a nota de non presentado.
Para superar a materia na segunda oportunidade, os alumnos deberán someterse á avaliación de todas as partes obrigatorias pendentes, de acordo co especificado anteriormente. Para o resto, conservaranse as cualificacións obtidas durante o curso. O estudantado repetidor deberá seguir o mesmo sistema de avaliación que o resto do estudantado.
No caso de realización fraudulenta de exercicios ou probas, aplicarase o disposto na normativa para avaliar o rendemento académico dos estudantes e revisar as cualificacións (https://www.xunta.gal/dog/Publicados/2011/20110721 /AnuncioG2018-190711-4180_gl.html). En aplicación da normativa ETSE sobre plaxio (aprobada pola Xunta da ETSE o 19/12/2019), a copia total ou parcial de calquera exercicio de práctica ou teoría suporá o fracaso de ambas as oportunidades do curso, coa cualificación 0,0 nos dous casos (https://www.usc.es/etse/files/u1/NormativaPlagioETSE2019.pdf).Tempo de traballo presencial: 41 horas totais, divididas en 10 horas (docencia teórica), 30 horas (docencia interactiva práctica), 1 hora (titorías).
Tempo de traballo persoal: 71,5 h (total)Recoméndase que os alumnos resolvan, implementen, verifiquen e validen todos os exercicios e prácticas propostas (non só os avaliables). Así mesmo, considérase importante facer un uso intensivo de titorías para resolver dúbidas.
Recoméndase non cursar a materia sen ter superado previamente a materia “Intelixencia Artificial”. A materia impartirase en castelán e galego, pero tanto na bibliografía, referencias e apuntes poderá haber contidos en lingua inglesa.
-
Alberto Jose Bugarin Diz
Coordinador/a- Departamento
- Electrónica e Computación
- Área
- Ciencia da Computación e Intelixencia Artificial
- Teléfono
- 881816440
- Correo electrónico
- alberto.bugarin.diz@usc.es
- Categoría
- Profesor/a: Catedrático/a de Universidade
Alejandro Catala Bolos
- Departamento
- Electrónica e Computación
- Área
- Ciencia da Computación e Intelixencia Artificial
- Correo electrónico
- alejandro.catala@usc.es
- Categoría
- PROFESOR/A PERMANENTE LABORAL
-
1º semestre - Do 08 ao 14 de setembro Luns 11:30-14:00 Grupo /CLIL_01 Castelán IA.S2 Martes 09:00-11:30 Grupo /CLIL_02 Castelán IA.S2 18:00-19:00 Grupo /CLE_01 Castelán IA.S1 Exames 12.01.2026 16:00-20:00 Grupo /CLIL_01 Aula A2 12.01.2026 16:00-20:00 Grupo /CLIL_02 Aula A2 12.01.2026 16:00-20:00 Grupo /CLE_01 Aula A2 06.07.2026 10:00-14:00 Grupo /CLIL_01 IA.11 06.07.2026 10:00-14:00 Grupo /CLIL_02 IA.11 06.07.2026 10:00-14:00 Grupo /CLE_01 IA.11