The master provides advanced training in quantum chemistry and in other areas of computational chemistry, both at the application level and at the development level.
Master in Theoretical Chemistry and Computer Modelling (4th edition)
Duration:
2 academic years
RUCT code: 4314273
ECTS Number: 120
Seats number: 6
Dean or center director:
Jesus Sanmartin Matalobos
jesus.sanmartin [at] usc.es
Title coordinator:
Saulo Angel Vazquez Rodriguez
saulo.vazquez [at] usc.es
Use languages:
Spanish, Galician
Coordinator university:
Autonomous University of Madrid
Partaker universities:
University of Extremadura
University of Islas Baleares
University of Barcelona
University of Santiago de Compostela
University of Murcia
University of Oviedo
University of Salamanca
University of Cantabria
University of Valencia
University of Valladolid
University of País Vasco
Autonomous University of Madrid
University of Vigo
University of Jaume I
Xunta de Galicia title implantation authorization date:
21/04/2014
BOE publication date:
27/07/2015 (Modf:02/07/2021)
Last accreditation date:
23/02/2018
This is a coordinated university master's degree involving 14 Spanish universities and 10 European universities. The Spanish universities are: Santiago de Compostela, Barcelona, Cantabria, Extremadura, Balearic Islands, Jaume I of Castellon, Murcia, Oviedo, Basque Country/Euskal Herriko Unibertsitatea, Salamanca, Valencia, Valladolid and Vigo, with the overall coordination of the Autonomous University of Madrid. The foreign universities are: Sorbonne Université, Université Tolouse III Paul Sabatier, Université de Montpellier, Université de Pau et des Pays de l'Adour, Université de Bordeaux, Università degli Studi di Perugia, Università degli studi di Trieste, Università di Pisa, Rijksuniversiteit Groningen and KU Leuven. The first year of the master is taught at the Spanish state level and the second at the European level.
The master provides advanced training in quantum chemistry and in other areas of computational chemistry, both at the application level and at the development level.
Duration:
2 academic years
RUCT code: 4314273
ECTS Number: 120
Seats number: 6
Dean or center director:
Jesus Sanmartin Matalobos
jesus.sanmartin [at] usc.es
Title coordinator:
Saulo Angel Vazquez Rodriguez
saulo.vazquez [at] usc.es
Use languages:
Spanish, Galician
Coordinator university:
Autonomous University of Madrid
Partaker universities:
University of Extremadura
University of Islas Baleares
University of Barcelona
University of Santiago de Compostela
University of Murcia
University of Oviedo
University of Salamanca
University of Cantabria
University of Valencia
University of Valladolid
University of País Vasco
Autonomous University of Madrid
University of Vigo
University of Jaume I
Xunta de Galicia title implantation authorization date:
21/04/2014
BOE publication date:
27/07/2015 (Modf:02/07/2021)
Last accreditation date:
23/02/2018
This is a coordinated university master's degree involving 14 Spanish universities and 10 European universities. The Spanish universities are: Santiago de Compostela, Barcelona, Cantabria, Extremadura, Balearic Islands, Jaume I of Castellon, Murcia, Oviedo, Basque Country/Euskal Herriko Unibertsitatea, Salamanca, Valencia, Valladolid and Vigo, with the overall coordination of the Autonomous University of Madrid. The foreign universities are: Sorbonne Université, Université Tolouse III Paul Sabatier, Université de Montpellier, Université de Pau et des Pays de l'Adour, Université de Bordeaux, Università degli Studi di Perugia, Università degli studi di Trieste, Università di Pisa, Rijksuniversiteit Groningen and KU Leuven. The first year of the master is taught at the Spanish state level and the second at the European level.
The master provides advanced training in quantum chemistry and in other areas of computational chemistry, both at the application level and at the development level.
Completion requirements:
Compulsory: 47
Optional: 43
Master’s Final Project: 30
Total: 120
Not contemplated
Métodos avanzados en estructura electrónica, dinámica y modelización molecular
- P1182114
- Compulsory Credits
- Annual
- 12 Credits
Técnicas computacionales avanzadas
- P1182209
- Elective Credits
- Annual
- 6 Credits
Multiescala, machine learning y métodos qsar aplicados a biomoléculas
- P1182210
- Elective Credits
- Annual
- 6 Credits
Métodos teóricos para la simulación de materiales
- P1182211
- Elective Credits
- Annual
- 6 Credits
De la teoría a la implementación: tutoriales en química teórica
- P1182212
- Elective Credits
- Annual
- 6 Credits
Proyecto de programación de química computacional
- P1182213
- Elective Credits
- Annual
- 6 Credits
Química de superficies e interfases: experimentación y modelización
- P1182214
- Elective Credits
- Annual
- 6 Credits
Modelización multiescala de sistemas moleculares complejos
- P1182215
- Elective Credits
- Annual
- 6 Credits
Modelización de estructura electrónica
- P1182216
- Elective Credits
- Annual
- 6 Credits
Master's Dissertation
- P1182110
- Compulsory Credits
- End of Degree Projects and End of Master's Degree Projects
- 30 Credits
No se contempla
Completion requirements:
Compulsory: 47
Optional: 43
Master’s Final Project: 30
Total: 120
Toda persona interesada en el máster en Química Teórica y Modelización Computacional podrá acceder a la información sobre el título y sobre los procesos de acceso y matriculación a través de diferentes vías como son las páginas web institucionales de las catorce universidades implicadas en el convenio. En estas páginas web se ofrece información detallada sobre el Máster de tipo características generales, objetivos y competencias del plan de estudios, los criterios, órganos y procedimientos de admisión, el plan de formación (objetivos/competencias, metodología, contenidos, criterios de evaluación, recursos bibliográficos y documentales, responsable docente, etc.)
El Coordinador del Máster Universitario se ocupará personalmente de solventar todas aquellas dudas que el potencial alumnado le plantee, facilitándoles las direcciones pertinentes de los diferentes servicios de las Universidades a los que pueden dirigirse. En caso de que la persona interesada lo requiera tendrán una reunión previa a la matriculación para explicar de forma detallada las características del Máster Universitario.
Cada Universidad cuenta con Unidades encargadas de dar información y asesoramiento sobre la oferta formativa de postgrado.
Los estudiantes inscritos en el programa serán recibidos en su primer día por el Coordinador del máster en su Universidad. El Coordinador lo presentará al resto de personal, le explicará los procedimientos propios de la Universidad y los pondrá en contacto con la oficina de gestión del máster para requerimientos posteriores relacionados con el mismo.
Una vez matriculados, la normativa de gestión de Másteres Universitarios (oficiales) establece que los estudiantes contarán con un tutor o tutora personal que les asignará la Comisión de Coordinación Académica del Máster tras su matrícula, además del director de trabajo fin de máster, que cada estudiante escoge basándose en la oferta anual de trabajos realizada por el profesorado. Ambos actuarán como orientadores en la toma de las decisiones necesarias para el buen desarrollo académico de sus estudios de postgrado.
Así mismo, el responsable y los profesores o profesoras que forman la Comisión de Coordinación Académica del Máster están siempre accesibles a las necesidades del alumnado del Máster, así como todo el profesorado implicado, que dispone de un tiempo de tutoría.
Access
Poderán acceder ás ensinanzas oficiais de máster:
1. As persoas que estean en posesión dun título universitario oficial español.
2. Aquelas que teñan un título expedido por unha institución de educación superior do EEES que faculta no país expedidor do título para o acceso a ensinanzas de máster.
3. Os titulados conforme a sistemas educativos alleos ao EEES sen necesidade de homologación dos seus títulos, previa comprobación pola Universidade de que os ditos títulos acreditan un nivel de formación equivalente aos correspondentes títulos universitarios españois e que facultan no país expedidor do título para o acceso a ensinanzas de posgrao.
Admission
Modality: general criteria (dossier)
Access qualifications:
Degrees from the branch of Sciences, from the branch of Health Sciences and from the branch of Architecture and Engineering.
Modality: general criteria (dossier)
Access qualifications:
Degrees from the branch of Sciences, from the branch of Health Sciences and from the branch of Architecture and Engineering.
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
- Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
- Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
- Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- Students are able to promote, in academic and professional contexts, technological and scientific progress within a knowledge-based society and respect for:
(a) fundamental rights and equal opportunities for men and women; (b) the principles of equal opportunities and universal accessibility for people with disabilities
b) the principles of equal opportunities and universal accessibility for people with disabilities
c) the values of a culture of peace and democratic values.
- Students are able to solve problems and make decisions of any kind while commiting to the defence and practice of equality policies.
- Students are able to work in multidisciplinary teams and with their own peers respecting the principle of equality of men and women.
- Students develop critical thinking and reasoning and are able to communicate in an egalitarian and non-sexist manner both orally and in writing, in their own language and in a foreign language.
- Students demonstrate their knowledge and understanding of facts by applying concepts, principles and theories related to Theoretical Chemistry and Computational Modelling.
- Acquire a global vision of the different applications of Theoretical Chemistry and modelling in the fields of Chemistry, Biochemistry, Materials Science, Astrophysics and Catalysis.
- Understand the theoretical and practical foundations of computational techniques with which to analyse the electronic, morphological and structural structure of a compound and interpret the results appropriately.
- Manage the main sources of scientific information related to Theoretical Chemistry and Computational Modelling.
- The student is able to make a contribution through original research, which is worthy, at least in part, of nationally referenced publication.
- The student understands the basis of Statistical Mechanics formulated from collectivities.
He/she knows how to calculate partition functions and applies quantum and classical statistics to ideal systems of interest in chemistry.
- The student possesses the mathematical basis necessary for the correct treatment of symmetry in atoms, molecules and solids, with emphasis on possible applications.
- They are familiar with the fundamental postulates of Quantum Mechanics necessary for a good understanding of the most common methods used in quantum chemistry.
- Students master the most common programming techniques in physics and chemistry and are familiar with the essential computational tools in these areas.
- They are able to develop efficient programmes in Fortran in order to use these tools in their daily work.
- The student is familiar with the computational techniques which, based on molecular mechanics and dynamics, are the basis for the design of molecules of interest in fields such as pharmacology, petrochemistry, etc.
- Knows and critically evaluates the applicability of advanced methods of Quantum Chemistry.
- Knows the existence of advanced computational techniques such as: instruction and data pipelining, superscalar and multiscalar processors, chain operations, parallel platforms, etc.
- The learner is able to adapt to different cultural environments demonstrating flexibility in responding to change.
- The student is organised in his/her work, demonstrating that he/she knows how to manage time and resources.
- The student has the ability to analyse and synthesise in such a way that he/she is able to understand, interpret and evaluate relevant information, taking responsibility for his/her own learning or, in the future, for the identification of professional opportunities and employment opportunities.
- The student has the ability to generate new ideas based on his/her own decisions.
- Capacity for reasoning and critical and self-critical reflection as a way to improve the learning process itself and the generation and development of ideas in a professional or research context.
- Social and ethical commitment to groups in situations of risk or exclusion, assuming responsibilities linked to the complexity of professional intervention.
- Knowing how to communicate and argue knowledge, results and conclusions of research or professional practice to specialised and non-specialised audiences in a clear and unambiguous way.
- Decide and use the appropriate procedures to obtain funding as a researcher or as an entrepreneur.
- Ability to obtain, select, elaborate and process information from different sources with objective criteria, prioritising them according to their quality and relevance.
- Predict and control the evolution of complex situations through the development of new and innovative work methodologies adapted to the scientific/research and professional field.
- Identify and rigorously select the appropriate methodology to formulate hypotheses, define problems and design work strategies specific to research with an emphasis on ethical commitment.
- Promote in academic and professional contexts the advancement of scientific-technological, social or cultural knowledge and its transfer to society.
- Ability to assume responsibility for one's own professional development, in accordance with the challenges and opportunities posed by society.
Mobility
Anyone interested in the master's degree in Theoretical Chemistry and Computational Modelling can access information about the degree and the admission and enrolment processes through different channels such as the institutional websites of the fourteen universities involved in the agreement. These websites offer detailed information on the Master's Degree, such as general characteristics, objectives and competences of the syllabus, admission criteria, bodies and procedures, the training plan (objectives/competences, methodology, contents, assessment criteria, bibliographic and documentary resources, teaching staff, etc.).
The Coordinator of the University Master's Degree will personally deal with any queries that potential students may have, providing them with the relevant addresses of the different services of the Universities they may contact. If the interested party so requires, a meeting will be held prior to enrolment to explain in detail the characteristics of the University Master's Degree.
Each university has units in charge of providing information and advice on the postgraduate courses on offer.
Students enrolled in the programme will be welcomed on their first day by the Master's Coordinator at their university. The coordinator will introduce them to the other staff, explain the university's procedures and put them in contact with the Master's management office for any further requirements related to the programme.
Once enrolled, the regulations for the management of (official) Master's degrees establish that students will have a personal tutor assigned to them by the Master's Academic Coordination Committee after enrolment, as well as the director of the Master's thesis, which each student chooses on the basis of the annual offer of projects made by the teaching staff. Both will act as advisors in making the necessary decisions for the proper academic development of their postgraduate studies.
Likewise, the person in charge and the lecturers who make up the Master's Academic Coordination Committee are always accessible to the needs of the Master's students, as are all the lecturers, who have tutoring time available.
Student mobility is regulated through the “Regulation of inter-university exchange.” Exchange programs are managed through the International Relations Office, such as national exchange programs (SICUE) as well as Europeans (ERASMUS) and from outside the European Union (exchanges with Latin American countries or English-speaking countries):
Internships
No se contemplan
The MFP aims to achieve the general and specific competences of the subject and to acquire the theoretical and practical knowledge described in its contents, as well as developping personal and interpersonal competences linked to the ethical and responsible development of the profession.
The MFP consists of the design, planning and development of an original research project in which students demonstrate their knowledge and understanding of the facts by applying concepts, principles and theories related to Theoretical Chemistry and Computational Modelling.
The teaching methodologies consist of:
-Seminars: Where the results obtained from assignments and queries about the methodologies used will be discussed.
-Oral presentations of previously prepared topics, including debate with classmates and professors.
-Guidance and supervision in the preparation of written reports.
-Monitoring of the Master's Final Project.
-Active participation in tasks that allow the development of communication skills.
The assessment system consists of the completion and public and oral defence, before an examining board, of the written report on the original research work carried out by the student.
The master's degree is taught by prestigious teaching and research staff from the different participating universities, both Spanish and foreign.
Completion requirements:
Compulsory: 47
Optional: 43
Master’s Final Project: 30
Total: 120
Not contemplated
Métodos avanzados en estructura electrónica, dinámica y modelización molecular
- P1182114
- Compulsory Credits
- Annual
- 12 Credits
Técnicas computacionales avanzadas
- P1182209
- Elective Credits
- Annual
- 6 Credits
Multiescala, machine learning y métodos qsar aplicados a biomoléculas
- P1182210
- Elective Credits
- Annual
- 6 Credits
Métodos teóricos para la simulación de materiales
- P1182211
- Elective Credits
- Annual
- 6 Credits
De la teoría a la implementación: tutoriales en química teórica
- P1182212
- Elective Credits
- Annual
- 6 Credits
Proyecto de programación de química computacional
- P1182213
- Elective Credits
- Annual
- 6 Credits
Química de superficies e interfases: experimentación y modelización
- P1182214
- Elective Credits
- Annual
- 6 Credits
Modelización multiescala de sistemas moleculares complejos
- P1182215
- Elective Credits
- Annual
- 6 Credits
Modelización de estructura electrónica
- P1182216
- Elective Credits
- Annual
- 6 Credits
Master's Dissertation
- P1182110
- Compulsory Credits
- End of Degree Projects and End of Master's Degree Projects
- 30 Credits
No se contempla
Completion requirements:
Compulsory: 47
Optional: 43
Master’s Final Project: 30
Total: 120
Toda persona interesada en el máster en Química Teórica y Modelización Computacional podrá acceder a la información sobre el título y sobre los procesos de acceso y matriculación a través de diferentes vías como son las páginas web institucionales de las catorce universidades implicadas en el convenio. En estas páginas web se ofrece información detallada sobre el Máster de tipo características generales, objetivos y competencias del plan de estudios, los criterios, órganos y procedimientos de admisión, el plan de formación (objetivos/competencias, metodología, contenidos, criterios de evaluación, recursos bibliográficos y documentales, responsable docente, etc.)
El Coordinador del Máster Universitario se ocupará personalmente de solventar todas aquellas dudas que el potencial alumnado le plantee, facilitándoles las direcciones pertinentes de los diferentes servicios de las Universidades a los que pueden dirigirse. En caso de que la persona interesada lo requiera tendrán una reunión previa a la matriculación para explicar de forma detallada las características del Máster Universitario.
Cada Universidad cuenta con Unidades encargadas de dar información y asesoramiento sobre la oferta formativa de postgrado.
Los estudiantes inscritos en el programa serán recibidos en su primer día por el Coordinador del máster en su Universidad. El Coordinador lo presentará al resto de personal, le explicará los procedimientos propios de la Universidad y los pondrá en contacto con la oficina de gestión del máster para requerimientos posteriores relacionados con el mismo.
Una vez matriculados, la normativa de gestión de Másteres Universitarios (oficiales) establece que los estudiantes contarán con un tutor o tutora personal que les asignará la Comisión de Coordinación Académica del Máster tras su matrícula, además del director de trabajo fin de máster, que cada estudiante escoge basándose en la oferta anual de trabajos realizada por el profesorado. Ambos actuarán como orientadores en la toma de las decisiones necesarias para el buen desarrollo académico de sus estudios de postgrado.
Así mismo, el responsable y los profesores o profesoras que forman la Comisión de Coordinación Académica del Máster están siempre accesibles a las necesidades del alumnado del Máster, así como todo el profesorado implicado, que dispone de un tiempo de tutoría.
Access
Poderán acceder ás ensinanzas oficiais de máster:
1. As persoas que estean en posesión dun título universitario oficial español.
2. Aquelas que teñan un título expedido por unha institución de educación superior do EEES que faculta no país expedidor do título para o acceso a ensinanzas de máster.
3. Os titulados conforme a sistemas educativos alleos ao EEES sen necesidade de homologación dos seus títulos, previa comprobación pola Universidade de que os ditos títulos acreditan un nivel de formación equivalente aos correspondentes títulos universitarios españois e que facultan no país expedidor do título para o acceso a ensinanzas de posgrao.
Admission
Modality: general criteria (dossier)
Access qualifications:
Degrees from the branch of Sciences, from the branch of Health Sciences and from the branch of Architecture and Engineering.
Modality: general criteria (dossier)
Access qualifications:
Degrees from the branch of Sciences, from the branch of Health Sciences and from the branch of Architecture and Engineering.
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
- Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
- Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
- Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- Students are able to promote, in academic and professional contexts, technological and scientific progress within a knowledge-based society and respect for:
(a) fundamental rights and equal opportunities for men and women; (b) the principles of equal opportunities and universal accessibility for people with disabilities
b) the principles of equal opportunities and universal accessibility for people with disabilities
c) the values of a culture of peace and democratic values.
- Students are able to solve problems and make decisions of any kind while commiting to the defence and practice of equality policies.
- Students are able to work in multidisciplinary teams and with their own peers respecting the principle of equality of men and women.
- Students develop critical thinking and reasoning and are able to communicate in an egalitarian and non-sexist manner both orally and in writing, in their own language and in a foreign language.
- Students demonstrate their knowledge and understanding of facts by applying concepts, principles and theories related to Theoretical Chemistry and Computational Modelling.
- Acquire a global vision of the different applications of Theoretical Chemistry and modelling in the fields of Chemistry, Biochemistry, Materials Science, Astrophysics and Catalysis.
- Understand the theoretical and practical foundations of computational techniques with which to analyse the electronic, morphological and structural structure of a compound and interpret the results appropriately.
- Manage the main sources of scientific information related to Theoretical Chemistry and Computational Modelling.
- The student is able to make a contribution through original research, which is worthy, at least in part, of nationally referenced publication.
- The student understands the basis of Statistical Mechanics formulated from collectivities.
He/she knows how to calculate partition functions and applies quantum and classical statistics to ideal systems of interest in chemistry.
- The student possesses the mathematical basis necessary for the correct treatment of symmetry in atoms, molecules and solids, with emphasis on possible applications.
- They are familiar with the fundamental postulates of Quantum Mechanics necessary for a good understanding of the most common methods used in quantum chemistry.
- Students master the most common programming techniques in physics and chemistry and are familiar with the essential computational tools in these areas.
- They are able to develop efficient programmes in Fortran in order to use these tools in their daily work.
- The student is familiar with the computational techniques which, based on molecular mechanics and dynamics, are the basis for the design of molecules of interest in fields such as pharmacology, petrochemistry, etc.
- Knows and critically evaluates the applicability of advanced methods of Quantum Chemistry.
- Knows the existence of advanced computational techniques such as: instruction and data pipelining, superscalar and multiscalar processors, chain operations, parallel platforms, etc.
- The learner is able to adapt to different cultural environments demonstrating flexibility in responding to change.
- The student is organised in his/her work, demonstrating that he/she knows how to manage time and resources.
- The student has the ability to analyse and synthesise in such a way that he/she is able to understand, interpret and evaluate relevant information, taking responsibility for his/her own learning or, in the future, for the identification of professional opportunities and employment opportunities.
- The student has the ability to generate new ideas based on his/her own decisions.
- Capacity for reasoning and critical and self-critical reflection as a way to improve the learning process itself and the generation and development of ideas in a professional or research context.
- Social and ethical commitment to groups in situations of risk or exclusion, assuming responsibilities linked to the complexity of professional intervention.
- Knowing how to communicate and argue knowledge, results and conclusions of research or professional practice to specialised and non-specialised audiences in a clear and unambiguous way.
- Decide and use the appropriate procedures to obtain funding as a researcher or as an entrepreneur.
- Ability to obtain, select, elaborate and process information from different sources with objective criteria, prioritising them according to their quality and relevance.
- Predict and control the evolution of complex situations through the development of new and innovative work methodologies adapted to the scientific/research and professional field.
- Identify and rigorously select the appropriate methodology to formulate hypotheses, define problems and design work strategies specific to research with an emphasis on ethical commitment.
- Promote in academic and professional contexts the advancement of scientific-technological, social or cultural knowledge and its transfer to society.
- Ability to assume responsibility for one's own professional development, in accordance with the challenges and opportunities posed by society.
Mobility
Anyone interested in the master's degree in Theoretical Chemistry and Computational Modelling can access information about the degree and the admission and enrolment processes through different channels such as the institutional websites of the fourteen universities involved in the agreement. These websites offer detailed information on the Master's Degree, such as general characteristics, objectives and competences of the syllabus, admission criteria, bodies and procedures, the training plan (objectives/competences, methodology, contents, assessment criteria, bibliographic and documentary resources, teaching staff, etc.).
The Coordinator of the University Master's Degree will personally deal with any queries that potential students may have, providing them with the relevant addresses of the different services of the Universities they may contact. If the interested party so requires, a meeting will be held prior to enrolment to explain in detail the characteristics of the University Master's Degree.
Each university has units in charge of providing information and advice on the postgraduate courses on offer.
Students enrolled in the programme will be welcomed on their first day by the Master's Coordinator at their university. The coordinator will introduce them to the other staff, explain the university's procedures and put them in contact with the Master's management office for any further requirements related to the programme.
Once enrolled, the regulations for the management of (official) Master's degrees establish that students will have a personal tutor assigned to them by the Master's Academic Coordination Committee after enrolment, as well as the director of the Master's thesis, which each student chooses on the basis of the annual offer of projects made by the teaching staff. Both will act as advisors in making the necessary decisions for the proper academic development of their postgraduate studies.
Likewise, the person in charge and the lecturers who make up the Master's Academic Coordination Committee are always accessible to the needs of the Master's students, as are all the lecturers, who have tutoring time available.
Student mobility is regulated through the “Regulation of inter-university exchange.” Exchange programs are managed through the International Relations Office, such as national exchange programs (SICUE) as well as Europeans (ERASMUS) and from outside the European Union (exchanges with Latin American countries or English-speaking countries):
Internships
No se contemplan
The MFP aims to achieve the general and specific competences of the subject and to acquire the theoretical and practical knowledge described in its contents, as well as developping personal and interpersonal competences linked to the ethical and responsible development of the profession.
The MFP consists of the design, planning and development of an original research project in which students demonstrate their knowledge and understanding of the facts by applying concepts, principles and theories related to Theoretical Chemistry and Computational Modelling.
The teaching methodologies consist of:
-Seminars: Where the results obtained from assignments and queries about the methodologies used will be discussed.
-Oral presentations of previously prepared topics, including debate with classmates and professors.
-Guidance and supervision in the preparation of written reports.
-Monitoring of the Master's Final Project.
-Active participation in tasks that allow the development of communication skills.
The assessment system consists of the completion and public and oral defence, before an examining board, of the written report on the original research work carried out by the student.
The master's degree is taught by prestigious teaching and research staff from the different participating universities, both Spanish and foreign.