ECTS credits ECTS credits: 3
ECTS Hours Rules/Memories Student's work ECTS: 51 Hours of tutorials: 3 Expository Class: 9 Interactive Classroom: 12 Total: 75
Use languages Spanish, Galician
Type: Ordinary subject Master’s Degree RD 1393/2007 - 822/2021
Center Higher Technical Engineering School
Call: Second Semester
Teaching: Sin Docencia (En Extinción)
Enrolment: No Matriculable (Sólo Planes en Extinción)
The aim of the subject is to change the concept, the students of the University Master of Chemical Engineering and Bioprocesses have, about the sewage treatment plants considered as raw materials and energy consuming environmental systems to be seen as sustainable systems (STP of the XXI century) to produce resources, energy, reusable water, value-added products (nutrients, biopolymers,…), which can be produced and utilized in a feasible economical way.
The contents of the subject are those succinctly indicated in the course descriptor:
“Study of the different options to transform the STPs from resources sinks to sources of energy, water and nutrients production. Operational energetic optimization. Energy production and use. Resources recovery: nitrogen, phosphorous, biopolymers. Water reuse. New challenges: emerging pollutants removal and greenhouse gases” as it is indicated in Masters Report.
The subject program is divided in 5 sections which comprise the aspects indicated in the previous descriptor.
The development of the subject is structured in five units. The corresponding hours to Expositive Lectures (E.L.) and Interactive Lectures (I.L.) are indicated.
Unit 1. Change of paradigm: from the sewage treatment plants to resources recovery from the wastewater (2 h E.L. + 2 h I.L.).
STP, associated mass and energy balances. Energy associated to pumping and related equipment. Energy related to the aeration systems. Actions to reduce the energy requirements of conventional plants, energetic optimization. New schemes for resources recovery plants design. New challenges for the conception of the STP of the XXI century (decrease of sludge production, emerging pollutants, greenhouse gases). Sustainable development goals. Circular economy in the wastewater treatment sector.
Case study: energetic optimization of the operation of a wastewater treatment plant.
Unit 2. Wastewater reuse (2 h E.L. + 2 h I.L.).
The quality of wastewater for reuse purposes. Sanitary aspects of the water reuse. Legislation and normative. Technologies for water reuse: coagulation-flocculation, filtration through granular beds, utilization of microfiltration, ultrafiltration and nanofiltration membranes and reverse osmosis. Water disinfection for reuse purposes. Water reuse in the industry, urban and agricultural use. Aquifers recharge.
Case study: Application of technologies for emerging pollutants removal for reuse purposes.
Unit 3. Strategies for production and energy use optimization (2 h E.L. + 2 h I.L.).
Optimization of the use of the organic matter from the wastewater to produce biogas. Psychrophilic anaerobic digestion. Alternatives for nitrogen removal from the reject water and the main stream of a STP focused on the minimization of the organic matter biological requirements. Nitrite route. Anammox process. Autotrophic denitrification. Greenhouse gases production.
Case study: Applications to the sludge and main stream lines from a STP. Energy implications on the STPs operation (I).
Unit 4. High load advanced biological systems with low biomass production yields (2 h E.L. + 2 h I.L.).
Granular systems. Anaerobic granules formation. Biological processes: anaerobic and anoxic. Design criteria. High load reactors. Parameters affecting the aerobic granules formation. Sequencing systems operation. Biological processes: aerobic, anaerobic and anoxic. Main design parameters. Types of utilized reactors.
Case study: Applications to the sludge and main stream lines from a STP. Energy implications on the STPs operation (II).
Unit 5. Valuable products recovery from wastewater (2 h E.L. + 4 h I.L.).
Bacterial storage compounds. Bioplastics and polyhydroxialkanoates (PHA). Properties and uses of PHA. Storage compounds associated to the biological removal of organic matter or phosphorous. Phostrip process. PHA production in pure and microbial mixed cultures. Operational parameters. Use of the wastewater as substrate for the production of storage compounds as PHA. Production of volatile fatty acids. Production of exopolymers.
Case study: Applications to the sludge and main stream lines from a STP. Energy implications on the STPs operation (III).
Basic bibliography
- METCALF & EDDY INC. Wastewater Engineering. Treatment and resource recovery. 5ª Edición (edición internacional). New York: Editorial Mc-Graw Hill Higher Education, 2014. ISBN: 978-1-259-01079-8 Código ETSE: A213 13
Complementary materials (articles; norms)
- ARROJO, B. MOSQUERA-CORRAL, A., GARRIDO, J.M. e MÉNDEZ, R. Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research [en liña]. 2004, 38, 3389 – 3399 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/j.watres.2004.05.002
- ASANO, T. e BAHRI, A. Global challenges to wastewater reclamation and reuse. En: JAN LUNDQVIST (ed.). On the water front. World Water Week. Stockholm: Stockholm International Water Institute-SIWI, 2011, vol. 2, pp. 65-73. ISBN : 978-91-975872-8-0
- BEUN, J.J., HENDRIKS, A., VAN LOOSDRECHT, M.C.M., MORGENROTH, E., WILDERER, P.A. e HEIJNEN, J.J. Aerobic granulation in a sequencing batch reactor, Water Research [en liña]. 1999, 33(10), 2283-2290 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/S0043-1354(98)00463-1
- BLANCO, A., ORDÓÑEZ, R. e HERMOSILLA, D. 100% Reutilización de agua para fabricar 100% papel recuperado. Infoenviro [en liña]. 2009, 91-94 [consultado 20 de maio 2021]. Dispoñible en: http://eprints.ucm.es/11887/1/Infoenviro2009Aguas_definitivo.pdf
- CAMPOS, J.L., VÁZQUEZ-PADÍN, J.R., FERNÁNDEZ, I., FAJARDO, C., SECA, I., MOSQUERA-CORRAL, A. e MÉNDEZ, R. Procesos avanzados de eliminación de nitrógeno: nitrificación parcial, Anammox, desnitrificación autótrofa. En: MOSQUERA-CORRAL A. (ed.). Tecnologías Avanzadas para el Tratamiento de Aguas Residuales. 2ª ed. Santiago de Compostela: Editorial Lápices 4, 2013, pp. 127-156. ISBN 13: 978-84-692-5028-0
- GARRIDO, J.M., FDZ-POLANCO, M. e FDZ-POLANCO, F. Working with energy mass balances: a conceptual framework to understand the limits of municipal wastewater treatment. Water Science and Technology [en liña]. 2013, 67(10), 2294-2301 [consultado 20 de maio 2021]. Dispoñible en: 10.2166/wst.2013.124
- GONZÁLEZ, Y., MEZA, J.C., GONZÁLEZ, O. e CÓRDOVA, J.A. Síntesis y biodegradación de polihidroxialcanoatos: plásticos de origen microbiano. Revista Internacional de Contaminación Ambiental [en liña]. 2013, 29(1), 77-115 [consultado 20 de maio 2021]. Dispoñible en: http://www.scielo.org.mx/pdf/rica/v29n1/v29n1a7.pdf
- Guía para la aplicación del R.D. 1620/2007 por el que se establece el Régimen Jurídico de la Reutilización de las Aguas Depuradas [en liña]. España: Centro de publicaciones del Ministerio de Medio Ambiente y Medio Rural y Marino, 2010 [consultado 20 de maio 2021]. Dispoñible en: https://www.miteco.gob.es/es/agua/publicaciones/GUIA%20RD%201620_2007__…
- HERNÁNDEZ, F., MOLINOS, M. e SALA-GARRIDO, R. Eficiencia energética, una medida para reducir los costes de operación en las estaciones depuradoras de agua residuales. Tecnología del Agua, 2011, 326, 46-54. ISSN 0211-8173
- HULSHOFF, L.W., DE CASTRO,S.I., LETTINGA, G. e LENS, P.N.L. Anaerobic sludge granulation. Water Research [en liña]. 2004, 38, 1376–1389 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/j.watres.2003.12.002
- LEE, W.S., MAY CHUA, A.S., YEOH, H.K. e NGOH, G.C. A review of the production and application of waste-derived VFA. Chemical Engineering Journal [en liña]. 2014, 235, 83-99 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/j.cej.2013.09.002
- LUO, Y., GUO, W., NGO, H.H., NGHIEM, L.D., HAI, F.I., ZHANG, J., LIANG, S., e WANG, X.C. A review on the occurrence of micropollutants in the aquatic environment and the fate and removal during wastewater treatment. Science of the Total Environment [en liña]. 2014, 472-474, 619-641 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/j.scitotenv.2013.12.065
- MELGAREJO, J. Efectos ambientales y económicos de la reutilización del agua en España. Clm. Economía [en liña]. 2009, 15, 245-270 [consultado 20 de maio 2021]. Dispoñible en: http://www.clmeconomia.jccm.es/pdfclm/melgarejo_clm_15.pdf
- MORALEJO-GÁRATE H., MOSQUERA-CORRAL A., KLEEREBEZEM R., CAMPOS J.L. e VAN LOOSDRECHT M.C.M. Innovative processes for resources recovery from wastewaters: PHA production. En: OMIL PRIETO, F. y SUÁREZ MARTÍNEZ S. (eds.). Innovative technologies for urban wastewater treatment plants. Santiago de Compostela: Editorial Lápices 4, 2012, pp. 261-296. ISBN 978-84-695-3514-1
- MORALES,N., VAL DEL RÍO, A., VÁZQUEZ-PADÍN, J.R., MÉNDEZ R., MOSQUERA-CORRAL, A. e CAMPOS, J.L. Integration of the Anammox process to the rejection water and main stream lines of WWTPs [en liña]. Chemosphere, 2015, 140, 99-105 [consultado 20 de maio 2021]. Dispoñible en: 10.1016/j.chemosphere.2015.03.058
- MOSQUERA-CORRAL, A., FIGUEROA, M., MORALES, N., VAL, A., CAMPOS, J.L. e MÉNDEZ, R. Tecnologías basadas en biomasa granular aerobia. En: MOSQUERA-CORRAL A. (ed.). Tecnologías Avanzadas para el Tratamiento de Aguas Residuales. 2ª ed. Santiago de Compostela: Editorial Lápices 4, 2013, pp. 47-68. ISBN 13: 978-84-692-5028-0
- PÉREZ-PARRA, J. Depuración y reutilización de aguas residuales para riego. Curso superior de especialización. Mejora de la eficiencia del uso del agua en cultivos protegidos, Cajamar, 447-469 [consultado 20 de maio 2021]. Dispoñible en: https://www.publicacionescajamar.es/publicacionescajamar/public/pdf/ser…
- REAL DECRETO 1620/2007, de 7 de diciembre, por el que se establece el régimen jurídico de la reutilización de las aguas depuradas. BOE 294, 50639-50661. [consultado 20 de maio 2021]. Dispoñible en: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2007-21092
- REHM, B.H.A. Bacterial polymers: biosynthesis, modifications and applications. Nature Reviews, Microbiology, Advance online publication [en liña]. 2010, 1-15 [consultado 20 de maio 2021]. Dispoñible en: 10.1038/nrmicro2354
- SARPONG G., GUDE V.G. e MAGBANUA B.S.Energy autarky of small scale wastewater treatment plants by enhanced carbon capture and codigestion – A qualitative analysis Energy Conversion and Management [en liña]. 2019, 199, 111999 [consultado 20 de maio 2021]. Dispoñible en doi: 10.1016/j.enconman.2019.111999
- SIEGRIST, H., SALZGEBER, D., EUGSTER, J. e JOSS, A. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Science and Technology [en liña]. 2008, 57(3), 383-388 [consultado 20 de maio 2021]. Dispoñible en: 10.2166/wst.2008.048
- SIMÓN, P., LARDÍN, C. e ABELLÁN, M. Optimización energética en EDAR de la región de Murcia. Ingeniería Civil [en liña]. 2012, 168, 93-112 [consultado 20 de maio 2021]. Dispoñible en: http://hispagua.cedex.es/sites/default/files/hispagua_articulo/Ingcivil…
- VAN HAANDEL, A.C. e LETTINGA, G. Anaerobic sewage treatment. A Practical Guide for Regions with a Hot Climate. Chichester, England: John Wiley & Sons Ltd., 1994. ISBN 978-0471951216
In this subject the student will acquire or practice a serial of generic and specific competences, belonging to the engineering in general and specific of the science and technology of water treatment in particular.
General and basic competences:
CB7.- The students know how to apply their acquired knowledge and their solving problems capacity in new or slightly known environments in the frame of wider (or multidisciplinary) contexts related to their area of study.
CB10.- The students possess the learning abilities allowing them to continue studying in a way that will have to be to a large extent auto-directed or autonomous.
CG1.- To have acquired an advanced knowledge and demonstrated, in a frame of scientific and technological research or highly specialized, a detailed and based on comprehension of the theoretical and practical aspects and of the work methodology in one or more of the study fields.
CG3.- To be able to predict and control the evolution of complex situation by means of the development of new and innovative working methodologies adapted to the specific scientific/research, technological or professional sphere, in general multidisciplinary, where their activity is developed.
CG6.- To have the skill of solving those unfamiliar problems, incompletely defined, and having specifications in competence, considering the possible methods of solving them, including the most innovative ones, selecting the most appropriated one, and to be able to correct the implementation procedure, evaluating the different design solutions.
CG8.- To perform the appropriated research, undertake the design and supervise the development of engineering solutions, in new or little-known environments, linking creativity, originality, innovation and technology transfer.
CG15.- To adapt to society structural changes motivated by economic, energy or natural factors or phenomena, to solve the derived problems and to contribute with technological solutions with a high sustainable commitment.
Specific competences:
CE3.- To apply the acquired knowledge and the skill of solving problems in new or little-known environments in the frame of broader contexts (or multidisciplinary) related to the study area of Chemical Engineering.
CE4.- Ability to apply the scientific method and engineering and economy concepts, to formulate and solve complex problems in processes, equipments, facilities and services, where the matter experiences composition, state or energy content changes, characteristics of the chemical industry and of other related sectors such as pharmaceutical, biotechnological, materials, energy, food or environmental.
Cross competences:
CT2.- To adapt to changes, being able to apply new and advanced technologies together with other relevant processes, with initiative and entrepreneurship.
CT4.- Capacity of analysis, critic and synthesis.
The specific tasks evaluating the different competences are indicated in the section assessment system.
The methodology of the equivalent course in the new curriculum, which offers face-to-face teaching, will be followed:
P4142207 - Ecoprocesses for water treatment
The assessment system of the equivalent course in the new curriculum, which offers face-to-face teaching, will be followed:
P4142207 - Ecoprocesses for water treatment
-
Anuska Mosquera Corral
- Department
- Chemistry Engineering
- Area
- Chemical Engineering
- Phone
- 881816779
- anuska.mosquera [at] usc.es
- Category
- Professor: University Professor